
Using MQTT over WebSocket
Table of Contents

Using MQTT over WebSocket
What is WebSocket?
Why Use MQTT over WebSocket?
Prepare MQTT Broker

Set the MQTT server listeners.
Config mqtt broker to load tls config.

Get Started with MQTT over WebSocket
Install MQTT WebSocket Client
Connect to MQTT over WebSocket in Browser
Connection Address
Connection Options
Subscribe/Unsubscribe Topics
Publish/Receive Messages
Use WebSocket over SSL/TLS

Test
WS
WSS

Q&A
What is the difference between MQTT and WebSocket?
Can WSS support two-way authentication connections in the browser?
Can it be used outside of a browser environment?
Why do I need to fill in a path when connecting to MoP?
When developing MQTT web applications, whether using Vue.js or React, can I only use WebSocket
connections?

Summary

What is WebSocket?
WebSocket is a network communication protocol that enables two-way communication channels
over a single TCP connection. Unlike HTTP, WebSocket keeps an open connection between a client
and a server, which enables them to exchange data immediately and interactively. This makes
WebSocket ideal for real-time interactivity applications like online games, chat applications, and
stock trading systems.

The WebSocket protocol has two parts: handshake and data transfer. Handshake establishes a
connection between client and server, while data transfer exchanges information over the open
connection.

Why Use MQTT over WebSocket?
MQTT over WebSockets is quickly becoming an essential conduit for IoT interactions, offering a
more accessible, efficient, and enriched experience. By enabling direct MQTT data communication
through any web browser, it brings the world of IoT closer to everyone.

Here are some reasons to use MQTT over WebSocket:

af://n0
af://n4
af://n7

1. Simplified Interaction: Interact directly with IoT devices via any web browser. No need to
worry about different protocols – MQTT over WebSocket makes it straightforward.

2. Universal Accessibility: With a web browser, anyone can connect to and interact with IoT
devices. This opens up the world of IoT to everyone, not just those with technical expertise.

3. Real-Time Updates: Get data from IoT devices in real-time, providing the most current
insights directly to your browser.

4. Efficiency and Broad Support: MQTT is a lightweight protocol and, combined with the
widespread support of WebSocket in JavaScript, it allows for efficient real-time data
transmission on almost any web application.

5. Enhanced Data Visualization: Web pages can better, faster, and more richly display various
MQTT data. This advantage is particularly significant as web browsers become the de facto
interface for visualizing MQTT data.

MQTT over WebSocket democratizes access to IoT devices, enabling anyone with a web browser
to interact with these devices in real-time and easily.

Next, we will provide a comprehensive guide to using MQTT over WebSocket.

Prepare MQTT Broker

Set the MQTT server listeners.

Config mqtt broker to load tls config.

Note

MQTT Broker Info:

Server: broker.steamnative.io

TCP Port: `1883``

SSL/TLS Port: 8883

WebSocket Port: `8083

Secure WebSocket Port: 8084

Get Started with MQTT over WebSocket

Install MQTT WebSocket Client

MQTT.js is a fully open-source client-side library for the MQTT protocol, written in JavaScript and
available for Node.js and browsers. It supports MQTT/TCP, MQTT/TLS, and MQTT/WebSocket
connections.

This article will use the MQTT.js library to explain WebSocket connections.

mqttListeners=mqtt://127.0.0.1:1883,mqtt+ssl://127.0.0.1:8883,ws://127.0.0.1:808

3,ws+ssl://127.0.0.1:8084

mqttTlsCertificateFilePath=/xxx/server.crt

mqttTlsKeyFilePath=/xxx/server.key

af://n23
af://n24
af://n26
af://n29
af://n36
af://n37
https://github.com/mqttjs/MQTT.js

To install MQTT.js, use the npm command if you have the Node.js runtime environment on your

machine. You can install it globally and connect via the command line on the Node.js.

Installation for Node.js Project

CDN References

If you're working directly in the browser and prefer not to install the library, you can also use a
CDN:

Connect to MQTT over WebSocket in Browser

For simplicity, we will implement this directly in the browser by creating a basic HTML file. In this
file, we'll set up both a publisher and a subscriber.

npm

npm install mqtt --save

yarn

yarn add mqtt

<script src="<https://unpkg.com/mqtt/dist/mqtt.min.js>"></script>

<script>

 // Globally initializes an mqtt variable

 console.log(mqtt)

</script>

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Weboscoket MQTT</title>

 <script src="<https://unpkg.com/mqtt/dist/mqtt.min.js>"></script>

</head>

<body>

 Use WebSocket client to connect to MQTT server

</body>

<script>

 const clientId = 'mqttjs_' + Math.random().toString(16).substr(2, 8)

 const host = 'ws://broker.streamnative.io:8083/mqtt'

 const options = {

 keepalive: 60,

 clientId: clientId,

 protocolId: 'MQTT',

 protocolVersion: 4,

 clean: true,

 reconnectPeriod: 1000,

 connectTimeout: 30 * 1000,

 will: {

 topic: 'WillMsg',

 payload: 'Connection Closed abnormally..!',

 qos: 0,

af://n46

Connection Address

The example connection address, ws://broker.streamnavite.io:8083/mqtt , includes

protocol // hostname . domain : port / path .

Common mistakes by beginners include:

When connecting to the MQTT.js client, it is important to specify the protocol type in the
connection address. This is because the client supports multiple protocols. Additionally,
MQTT does not specify a port for WebSocket. MoP defaults to 8083 for non-encrypted
connections, while for encrypted connections, it defaults to 8084 .

Excluding path from the connection address: MQTT over WebSocket uniformly uses /mqtt

as the connection path, which should be specified when connecting.
The protocol and port are mismatched. Please use mqtt:// for MQTT, ws:// or wss:// for

WebSocket connections, and make sure to use encrypted WebSocket connections when
under HTTPS.
The certificate does not match the connection address.

Connection Options

In the previous code snippet, options refer to the client connection options. These options

include parameters such as keepalive , clientId , username , password , clean ,

reconnectPeriod , connectTimeout , and will . For more detailed descriptions of each option,
please refer to the MQTT.js documentation.

Subscribe/Unsubscribe Topics

Subscriptions can only be made after a successful connection, and the subscribed topics must
comply with MQTT subscription topic rules. JavaScript's asynchronous feature means a successful
connection is only ensured after the 'connect' event or by using client.connected .

 retain: false

 },

 }

 console.log('Connecting mqtt client')

 const client = mqtt.connect(host, options)

 client.on('error', (err) => {

 console.log('Connection error: ', err)

 client.end()

 })

 client.on('reconnect', () => {

 console.log('Reconnecting...')

 })

</script>

af://n49
af://n61
https://github.com/mqttjs/MQTT.js#client
af://n63

Publish/Receive Messages

You can publish messages to specific topics, which must comply with the MQTT publish topic
rules. You do not need to subscribe to the topic before publishing; the client must be connected.

Use WebSocket over SSL/TLS

Secure WebSocket connections can be established using the WSS protocol (WebSocket Secure),
essentially a WebSocket over a TLS (previously SSL) connection. TLS is used to encrypt the data
that is sent over the connection, ensuring data privacy and integrity, as well as authentication.

To use WebSocket over TLS with MQTT.js, you need to change the protocol in the broker address
from ws to wss . However, you must also ensure that the broker you are connecting to supports

WSS connections and that the port number is correct for WSS. For example, MoP uses port 8084

for WSS connections by default.

Here's an example of how you might establish a secure connection:

Remember, if you're connecting to a broker over WSS from a web page served over HTTPS, you
must ensure the broker's certificate is trusted by the client's browser. This usually means the
certificate must be issued by a well-known certificate authority and not be expired, revoked, or
used for a different domain. If you're using a self-signed certificate for the broker, you must
manually add it to the browser's trust store.

For more details and potential issues related to using WebSocket over TLS, please refer to the
MQTT.js documentation or the appropriate tutorial for your MQTT broker.

client.on('connect', () => {

 console.log(`Client connected: ${clientId}`)

 // Subscribe

 client.subscribe('testtopic', { qos: 0 })

})

// Unsubscribe

client.unubscribe('testtopic', () => {

 console.log('Unsubscribed');

})

// Publish

client.publish('testtopic', 'ws connection demo...!', { qos: 0, retain: false })

// Receive

client.on('message', (topic, message, packet) => {

 console.log(`Received Message: ${message.toString()} On topic: ${topic}`)

})

const host = 'wss://broker.steamnative.io:8084/mqtt'

const options = {

 // other options as before

}

const client = mqtt.connect(host, options)

// rest of your code...

af://n66
af://n69
https://github.com/mqttjs/MQTT.js#client

Note: When using WebSocket connections in a browser, it is not possible to establish two-way
authenticated connections. However, this feature is supported in most other programming
language environments. For example, in Node.js:

Test
We can use a tool like MQTTX, which provides a GUI for MQTT interactions. Here's how you can
test it:

1. download and install

2. start mqttx

const mqtt = require('mqtt')

const fs = require('fs')

const path = require('path')

const KEY = fs.readFileSync(path.join(__dirname, '/tls-key.pem'))

const CERT = fs.readFileSync(path.join(__dirname, '/tls-cert.pem'))

const TRUSTED_CA_LIST = fs.readFileSync(path.join(__dirname, '/crt.ca.cg.pem'))

const host = 'wss://broker.streamnative.io:8084/mqtt'

const options = {

 ...

 key: KEY,

 cert: CERT,

 rejectUnauthorized: true,

 ca: TRUSTED_CA_LIST,

}

const client = mqtt.connect(host, options)

af://n79
https://mqttx.app/

WS

1. New websocket connection

2. connect websocket

af://n88

3. Add a subscription

4. Publish message

WSS

1. New websocket connection

2. connect websocket with ssl

af://n102

3. Add a subscription

4. Publish message

Q&A

What is the difference between MQTT and WebSocket?

The main difference lies in the protocol design and use case: MQTT is a message transfer protocol
used for publish/subscribe communication, while WebSocket is a communication protocol used
for real-time bidirectional communication.

Can WSS support two-way authentication connections in the
browser?

No, it is impossible to specify a client certificate using JavaScript code when establishing a
connection in a browser, even if client certificates are set up in your OS certificate store or
potentially some smart card. This means that MQTT.js cannot do so. Additionally, you cannot
specify a Certificate Authority (CA) either, as it is controlled by the browser.

Reference: How to use TLS/SSL two-way authentication connections in browser? · Issue #1515 ·
mqttjs/MQTT.js

Can it be used outside of a browser environment?

Yes, you can use MQTT over WebSocket in non-browser environments. Different programming
languages have corresponding MQTT client libraries, such as Python, Node.js, Golang, etc.,
allowing you to connect to MQTT brokers and communicate using MQTT over WebSocket in your
chosen environment. When TLS/SSL connections are supported, you can also use mutual
certificate authentication.

af://n116
af://n117
af://n119
https://github.com/mqttjs/MQTT.js/issues/1515
af://n123

Why do I need to fill in a path when connecting to MoP?

A path must be filled in when using WebSocket to connect to MoP. This is because MoP follows
the unified path specification of MQTT-WebSocket. This specification requires a specific path to be
specified in WebSocket connections to identify and distinguish MQTT over WebSocket traffic. This
path routes MQTT over WebSocket traffic to the MQTT Broker for processing.

In MoP, the default path for MQTT over WebSocket is /mqtt . This is set according to the

specification. Therefore, when connecting to MoP, this path must be included in the WebSocket
address to ensure the connection is correctly routed to the MQTT broker.

When developing MQTT web applications, whether using
Vue.js or React, can I only use WebSocket connections?

If you are developing applications in a browser, you can only use WebSocket connections to
establish MQTT over WebSocket connections.

Summary
This quickstart guide covers the basics of using MQTT over WebSocket to establish real-time
communication between MQTT brokers and web browsers. We walk you through the essential
steps, including establishing the WebSocket connection, initializing the MQTT client, subscribing
and publishing messages, and testing the connection.

af://n125
https://www.streamnative.io/
af://n128
af://n130

	Using MQTT over WebSocket
	What is WebSocket?
	Why Use MQTT over WebSocket?
	Prepare MQTT Broker
	Set the MQTT server listeners.
	Config mqtt broker to load tls config.

	Get Started with MQTT over WebSocket
	Install MQTT WebSocket Client
	Connect to MQTT over WebSocket in Browser
	Connection Address
	Connection Options
	Subscribe/Unsubscribe Topics
	Publish/Receive Messages
	Use WebSocket over SSL/TLS

	Test
	WS
	WSS

	Q&A
	What is the difference between MQTT and WebSocket?
	Can WSS support two-way authentication connections in the browser?
	Can it be used outside of a browser environment?
	Why do I need to fill in a path when connecting to MoP?
	When developing MQTT web applications, whether using Vue.js or React, can I only use WebSocket connections?

	Summary

